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Abstract--For today's sophisticated machinery systems, on-line predictive maintenance has become a 
most reliable and cost effective method for machinery maintenance. An effective fault monitoring and 
diagnosis tool is able to recognize the characteristics, conditions, and developing trends of an operating 
machinery system, and is able to estimate fault severity of the system quantitatively. In order to meet the 
requirements, a new approach combining cerebellar model articulation controller (CMAC) neural 
networks and advanced vibration monitoring methods has been presented. A test rig consisting of 
two rotating hubs driven by a d.c. motor was used to produce different machine imbalance levels. A 
two-stage experiment is proposed. First, a CMAC network is trained with pre-defined imbalance 
conditions and a test data set is given to check the trained CMAC for imbalance severity prediction. 
Second, a CMAC network is trained by using a set of different imbalance levels and is then given an 
untrained condition to test the CMACs ability of imbalance severity interpolation. In addition, several 
potential capabilities of CMAC networks will be discussed and shown. The properties of the CMAC are 
notable. If implemented properly, CMAC can be used as an effective machinery condition monitor and 
fault severity estimation tool. 

1. INTRODUCTION 

Predictive maintenance is the science of using various kinds of data to determine the condition of 
machinery and to predict failure before it occurs. The benefits of predictive maintenance are 
reduced downtime, lower maintenance costs and improved safety. For today's sophisticated 
systems of machinery, predictive maintenance has become a most reliable and cost-effective method 
for monitoring and diagnosing faults [1]. Predictive maintenance relies on instruments with specific 
sensors to monitor a machine's normal and abnormal operations and to analyze these signals by 
comparing them with baseline data. There are many different types of methods that may be used, 
including oil analysis, vibration analysis and temperature and pressure monitoring. For many 
years, vibration analysis has been widely accepted as the most reliable method for predicting 
machinery problems [2, 3]. In this paper, vibration signals are used for rotating machine condition 
monitoring, fault diagnosis and severity estimation. 

Trend monitoring and fault recognition are two major data anlysis techniques required for most 
condition monitoring and diagnostic systems [1]. Trend monitoring involves plotting functional 
parameters (e.g. vibration, cutting force, current, temperature, pressure etc.) or their trending 
indices (e.g. RMS, Kurtosis etc.) against operating time. Fault recognition normally requires a 
detailed analysis of machinery signals to identify specific fault patterns. Traditionally, this is 
performed through visual inspection by experienced personnel using spectrum analysis or 
associated signal processing methods. However, these methods are usually costly and very 
inefficient. As an alternative to conventional fault diagnostic methods, artificial intelligence 
techniques are being introduced to assist in fault diagnosis. Several expert systems [4, 5] were 
developed to diagnose the malfunctions of advanced production equipment. Clearly, a rule-based 
expert system requires a complex database that needs to be generated and maintained by experts 
familiar with the historical causes and patterns of machine failures [6]. Therefore, the application 
of expert systems in manufacturing systems is restricted. 
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An effective fault diagnostic tool must be able to recognize the characteristics, conditions, and 
developing trends of an operating machinery system and be able to predict its future conditions. 
It must be able to function under uncertain environments. To meet such requirements, artificial 
neural networks (ANN) have a number of potential advantages. In recent years, great interest has 
been generated concerning the applications of ANNs. Researchers reported that ANNs worked 
well for many real-world classification problems [7]. Knapp and Wang developed a neural network 
using the backpropagation (BP) learning algorithm to classify the faults of a machine based on 
vibration signals [8]. Kim et al. conducted a number of multiple machinery fault experiments using 
BP neural networks for location detection, and severity determination based on vibration frequency 
spectra [9]. Lin and Wang studied a methodology which employed the autoregressive (AR) 
parametric modeling technique for vibration signals accompanying the adaptive resonance theory 
2 (ART2) neural network to perform signal classification [10]. Liu and Iyer used a backpropagation 
neural network to diagnose roller bearing defects [11]. However, BP has two major disadvantages 
with real-time applications; a low converging speed and an inability of incremental learning, mainly 
due to its global generalization property [12]. While the ART2 neural network looks promising for 
incremental and faster learning [10], its drawback is the ART2 algorithm which is only a pattern 
classifier, making machine fault severity estimation and fault prediction impossible. For most 
real-world problems, quantitative description of machinery behavior is important and often essential. 

In this paper, a new approach to machine fault severity estimation has been developed. A test 
rig consisting of two rotating hubs driven by a d.c. motor was used to produce different machine 
imbalance levels. Vibration signals were acquired and then analyzed based on vibration trending 
indices and autoregressive (AR) model parameters. A CMAC neural network was employed to 
evaluate different machine imbalance levels quantitatively. This has been accomplished mainly due 
to the outstanding function approximation abilities and the incremental, speedy learning of the 
CMAC. For vibration monitoring, several machine trending indices were used as inputs to the 
CMAC. Alternatively, AR parameters were also used as inputs to the CMAC. A comparison result 
from these two experiments will be given. Finally, the properties of the CMAC neural networks 
will be investigated and studied. 

2. CEREBELLAR MODEL ARTICULATION CONTROLLER (CMAC) 

2.1. Literature review and background 

The cerebellar model articulation controller or cerebellar model arithmetic computer (CMAC) 
was first proposed by Albus [13, 14]. Originally, the mathematical model of the CMAC was 
developed by imitating the information processing characteristics of the human cerebellum [15]. It 
has often been overlooked and traditionally regarded as a perceptron-like neural network that 
performed a table look-up of a nonlinear function. Actually, the CMAC is capable of very fast 
learning and contains certain features of interpolation and approximation [16]. It can learn 
nonlinear relationships from a very broad category of functions and generally converges in a small 
number of iterations. Several researchers have applied the CMAC to find solutions to various 
problems. For example, Moody used a modified multi-resolution hierarchy CMAC to predict 
chaotic time series [17]. Miller applied the CMAC to real-time control of a vision-assisted robot 
[18, 19]. Carter and others studied the fault tolerance of CMAC networks [20]. Linse and Stengel 
compared the function approximation'capability of the CMAC with the backpropagation and the 
B-spline interpolation procedure [21]. Lee and Kramer developed a pattern discrimination model 
(PDM) based on the CMAC networks to analyze robot system degradation [22]. It was also proved 
by Wong and Sideris that the CMAC learning algorithms always converge with exponential speed 
in certain conditions [16]. 

2.2. Mathematical model of the CMAC 

2.2. I. Nomenclature. 
N = dimensions of input vector, 
R = possible different values on each input dimension (input space resolution), 

RN= possible number of input vectors, 
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K ~ _ _  

Q= 
S i 

S =  
m i = 

M =  
A =  

At, = 
IApI = 

p =  

number of  quantizing functions in each input dimension, 
resolution number for each quantizing function, 
the ith input variable, 
input vector (e.g. S = {sl, s2 . . . . .  su}), 
the ith quantizing function, 
a set of quantizing functions (e.g. M = {ml, m2 . . . . .  raN}), 
a set of  memory association tables or granule cells, 
a set of physical memory association tables, 
size of  physical memory association tables, 
CMAC output, 

P = CMAC output vector, 
Pd ---- desi red ou tput ,  
Po = desired output vector, 
K/=  a quantizing function consisting of a set of mossy fibers, 
gj = the j t h  set of  granule cells, 
E = acceptable error, 
fl = percentage of correction, 

Wjo = the old value of weight at address location j, 
w~ = the new value of weight at address location j, 

where i = 1,2 . . . . .  N,j  = 1, 2 . . . . .  K. 
2.2.2. CMAC mapping scheme. Based on the knowledge of the structures and functions of the 

various cells and fiber types in the cerebellum, Albus proposed a mathematical model to explain the 
information-processing procedure of the cerebellum. Basically, the CMAC is defined by a series of 
mappings: 

S--~ M - - ,  A---~ Ap---. p, (1) 

where S is an input vector, M is a set of codes (named mossy fibers in the CMAC) used to encode 
S, A is a set of cells (called granule cells in the CMAC) contacted by M, Ap is a set of physical 
memory tables, and p is an output value. In CMAC mathematical formalism, M represents a set 
of  quantizing functions and A is a set of  memory association tables or address arrays. In the 
following, an example of a two-variable CMAC with four quantizing functions on each variable 
is provided to help illustrate the CMAC mapping algorithm. The example is shown in Fig. 1. 
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Fig. 1. Mapping scheme of a two-variable CMAC with four quantizing functions. 
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2.2.3. Input space discretization. An input vector S is the collection of N variables. In a real-world 
problem each variable may be associated with a measurement parameter, such as a reading from 
a sensor. Following the example in Fig. 1, a two-dimensional input space is represented by 
S = {s~, s2 }. For each dimension, a resolution number R is specified, meaning each input dimension 
is divided into R equal segments (R = 5 in the example). Depending on the different applications, 
the input space discretization level R may be high (fine resolution) or low (coarse resolution). 

2.2.4. S to Mmapping. The first CMAC mapping intends to simulate the function of mossy fibers 
in the cerebellum. Each individual input dimension has a unique mapping. Since N is the number 
of input dimension, therefore, there are N mappings as shown below: 

f SI ---~ ml, $2 ---~ m2, 
S---, M = • (2) 

SN ----t. mu. 

In the CMAC, each s~ to m~ mapping may be defined by a set of K quantizing functions: 

si--~ m~ = {k,i, ki2 . . . . .  k,r}. (3) 

For the example in Fig. l, the number of quantizing functions is four, so the s~ to m I mapping 
may be defined by four quantizing functions, k~l-kl4. Each quantizing function includes Q mossy 
fibers. Q is calculated by the following equations: 

R = 5 ,  

K = 4 ,  

o 

s, --, ml = {k,,, kiz, k,3, k14}, (4) 

k,~ = {D, ~}, 
k,~ = {A, E},  

k13 = {B, F}, 
k14 = {C, a}, 

where "A ", "B" ,  "C", "D", "E" ,  "F", "G" and "H" label all mossy fibers in m~ and "ceil(R/K)" 
calculates the smallest integer larger than R/K, which is two in this example. Therefore, once a 
unique set of mossy fibers is given to each si to mi mapping, the S to M mapping is completed. 
The number of the quantizing function K, also called the neighborhood number, is the most 
important parameter to be determined at this stage. K, which is arbitrarily chosen by the user, 
determines the generalization property of the CMAC. 

2.25. M to A mapping. The second mapping, M to A, imitates the structure of the granule cells 
in the cerebellum. The granule cells are, in fact, a set of memory tables in the CMAC. As shown 
in Fig. 1, each level of quantizing functions from the two input dimensions forms a set of granule 
cells. Therefore, there is a total of four sets of granule cells; gt, g2, g3, g4- Note that the granule 
cell sets can be a hyper-cube for a higher input dimension case (e.g. N > 3). A granule cell is a 
weight storing location, or a pointer, pointing to a particular weight value in a practical 
computation implementation. Each granule cell receives inputs from different combinations of 
mossy fibers, so that each granule cell may be triggered by only one such combination. For example, 
three input vectors S~ = (0, 0), S2 = (1, 0) and $3 = (1, 3) denoted by symbols " #  ", "&" and "$" 
respectively, are given in Fig. 1. S~ triggers the "D" ,  "A", " B "  and " C "  mossy fibers in the m~ 
set quantizing functions, and "d", "a" ,  "b"  and "c"  in the m2 set. By concatenating the same levels 
of mossy fibers, the "Dd", "Aa", "Bb" and "Cc" granule cells are chosen to store the weights 
of the S~ input vector. The output of the St vector is the summation of these distributed weights 
in granule cells, which concludes the A to p mapping. Following the same procedure, the weight 
of the S2 vector can be distributed into the "Dd", "Ee", "Bb" and "Cc"  cells and $3 into the "Dd", 
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"Ae",  " B f "  and "Cg"  cells. As shown in Fig. 1, S, and $2 share three granule cells, while St and 
$3 share only one cell, because Sz is closer to St than $3 is (see the input space in Fig. 1). 

The memory size used in CMAC is KQ ~. In Fig. 1, KQ N is 16, which is the total number of 
granule cells. Comparing KQ u to actual memory size R N (25 in the example), the CMAC uses less 
memory, and memory saving becomes significant when N is large. In addition, another memory 
reduction scheme was introduced by Albus, who applied a hash-coding technique to the CMAC 
networks [14]. Hash-coding is a commonly used computational method for reducing the amount 
of memory required to store sparse data space where a relatively small amount of data is scattered 
over a large number of memory locations. It operates by taking the memory address as a 
pseudo-random number. The number is usually restricted to the physical memory size. Hence, the 
last mapping in the CMAC, A to Ap, is a many-to-few mapping. In reality, the size of Ap may 
be chosen to fill-up the available memory in the computer. However, the many-to-few property 
may lead to "data collision" problems. For the CMAC, this problem may be ignored because the 
effect is essentially identical to the already existing problem of learning interference in the CMAC, 
which is handled by iterative data learning [14]. 

2.2.6. Learning algorithm. The CMAC neural network is a supervised learning network. Thus, 
in the training stage, the desired output of each input vector must be given. The training consists 
of adjusting the values in the weight table based on the error between the present CMAC output 
and the desired output. Therefore, if IP -Pd l  > E, where p is the current summation output, Po is 
the desired output and E is an acceptable error, then the learning begins. For each input-output 
pair, the weight adaptation process is described in equation (5): 

wj,=Wjo+~--~KPd)×fl. (5) 

In the equation above, wj, is the new value of the weight at address location j, wjo is the old value 
of the weight at address location j, fl is the learning rate or the percentage of correction, and 
j = l, 2 . . . . .  K. The weight updating process terminates until IP --PoI is no larger than E. 

A procedure for learning a function in the CMAC is as follows: 

1. Assume F is the function CMAC is to learn. Then Pd = F(S) is the desired input-output 
relationship. 

2. Select n points from the input space where Pd is available. 
3. Calculate the current CMAC output values by entering these n points, P = CMAC(S). 
4. For every element in P = (Pt ,P2 . . . . .  p,) and in Pd ~- (Pld,P2d . . . . .  P,d), if [Pi--Pidl < e, then 

stop; the desired vaues have been stored. Otherwise, if any IP~- P~ol> E, then adjust weights 
in the CMAC network using equation (5). 

5. Go to Step 3 and continue updating weights until the CMAC output values of all n points 
selected meet the criterion of [p~- P~d[ < E. 

3. AUTOREGRESSIVE (AR) PARAMETRIC MODEL 

Traditionally, the Fast Fourier transform (FFT)-based spectral estimators are used to estimate 
the power spectral density (PSD) of time signals. Since Burg introduced the first parametric spectral 
estimation method [33], many parameter estimation methods have been developed [23]. Among 
them, the autoregressive (AR) modeling method is the most popular [24]. The major advantage 
of using the parametric spectral estimation method is its ability to translate a time signal into both 
frequency (PSD) domain and parameter domain [10]. In addition, parametric spectral estimation 
is based on a more realistic assumption about time series and does not need a long data collection 
to get a high-resolution spectrum. 

An AR process is characterized by its AR parameters {at, as, a3 . . . . .  ap, as}. From the linear 
prediction viewpoint, if a random process is an ARp (a p-order AR process), the unobserved sample 
of the random process x, may be predicted based on the observed data set 
{x,_t, x,_2, x,_3 . . . . .  x,_p} (i.e. the previous p samples). Now consider a time series x,: 

x,,n = - ~  . . . . .  0 . . . . .  ~ ,  (6) 
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where the observed interval is from n = 1 . . . . .  N. The autoregressive model of x, can be defined 
as follows: 

Xn= - a l x n _ l - a 2 x n _  2 . . . . .  apx n p - F e  n . (7) 

Here e, is the prediction error, and p is the order of the model. Then, the parametric spectrum can 
be computed by plugging all p a k parameters into the theoretical power spectral density function 
defined in equation (8). 

2Att~ 2 
PAR(f) = 2 

1+  ~ akexp ( - - i2 rc f i cA t )  
k = l  

I 1 
- 3  ~<f ~< 3, (8) 

1 
A t = -  

S" 

Above, S is the sampling rate used in data acquisition, f is the fraction of the sampling rate, p is 
the prediction lag or order of the AR model, and a 2 is the variance. If the prediction parameters 
ak can be obtained, then the parametric spectrum PAR ( f )  of the random process can be calculated 
through equation (8). 

Several approaches are available for estimating the AR parameters. It has been observed that 
if the data consist of sinusoids with white noise, the peak location in the AR spectral estimate 
critically depends on the phase of the sinusoid [25]. The degree of phase dependence varies with 
different AR estimation methods. Of all the AR parameter estimation methods, the modified 
covariance method appears to yield the best estimation [26]. This is because it provides estimates 
which are the least sensitive to sinusoidal phases, and spectral peak shifting affected by noise is 
less than that of other methods [26]. An efficient algorithm for solving the equations of modified 
covariance methods was derived by Marple in 1980 [27]. Thus, after estimated parameters ilk, for 
k = 1, 2 , . . . ,  p, are derived, the estimate of white noise variance is obtained. By plugging all these 
values (i.e. ~ . . . . .  6p, 62) into equation (8), the parametric spectrum of the random process may 
be obtained. 

4. VIBRATION TRENDING INDEX TECHNIQUES 

Vibration trending indices are good ways to translate vibration signals into measures of 
machinery health status. Each signal could have more than one trending index associated with it. 
Furthermore, each trending index, which may be treated as a different aspect of the signal, carries 
different sensitivities for different machine fault types. Several trending techniques have been 
developed and studied [3, 28-30]. In this paper, EWMA (exponential weighted moving average), 
RMS (root mean square), MFRMS (matched filter root mean square) and Kurtosis were chosen 
to monitor the vibration conditions of a rotating machine. 

4.1. Exponent ia l l y  weighted  mov ing  average ( E W M A )  

The EWMA method is used to monitor the condition of machines and determine when an 
abnormal condition is occurring. The EWMA statistic is a way of determining how much the 
observed signal differs from the signal of a machine operating under normal conditions, through 
the calculation of overall variance. Based on its AR model, the EWMA control statistic of a 
particular signal is defined as follows: 

= ln[p . . . . .  lized ], 0} ,  (9) EWMA, max{(1 - 2)EWMA,_ t + 2 eo 

where EWMA0= 0, E W M A , =  the predicted EWMA value at time t (new EWMA) and 
- ln[p . . . . .  lized] is the sample E W M A t _ I =  the predicted EWMA value at time t 1 (old EWMA); eo 

variance of observed values at time t, and 2 is a smoothing constant, satisfying 0 < 2 < 1. The 
sample variance is calculated by forward and backward prediction errors of the AR model in the 
modified covariance method. The constant 2 determines the ratio of the "memory" of the EWMA 
statistic. That is, 2 determines the rate of decay of the weights, and in turn, the amount of 
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information recollected from past data. It was determined experimentally in the research that the 
value of 2 that minimized the predictive error was 0.7. 

4.2. Root mean square (RMS) 

The RMS method is the simplest approach for the measurement of overall vibration level. It is 
reported to be a useful performance measuring tool for machine components [31]. The root mean 
square value of a process can be calculated as in equation (10): 

( x . -  ~)  2 , (10) R M S =  ~ ,  ~ 

where x, is a stationary random process, the observed time interval n = 1 . . . . .  N, and 2 is the mean 
of the random process. 

4.3. Kurtosis 

A localized defect on the surface of a rolling element produces a series of spikes on vibration 
signals. These spikes are usually superimposed onto the background vibration of the rolling 
element. This phenomenon calls for the application of statistical analysis, such as Kurtosis, to 
monitor the rolling machine. Kurtosis, the normalized fourth moment distribution statistic, has 
been found to be a good indicator of examining the acceleration distribution of a rotating element 
[28]. The equation of Kurtosis is defined below: 

1 N (X _ 2 ) 4  
K u r t o s i s = ~ =  ~ , (11) 

where a is the standard deviation of the x, series and 2 is the mean of the x, series. 

4.4. Matehed filter root mean square (MFRMS)  

The MFRMS trending index, which is calculated based on the AR parametric spectrum, has 
proved to be a good indicator of bearing damage [32]. The MFRMS is mathematically described 
in equation (12): 

MFRMS = 10 x log ~ , 
. ,  J 

Ar( f  x S) = PAR(f), (12) 

0 < f < ½ ,  

where Af(i) is the amplitude of the ith spectral response of the current spectrum, and Aref(i) is 
the amplitude of the ith spectral response in the reference spectrum. M is the total number of lines 
in the spectrum, S is the sampling rate used in data acquisition, f is the fraction of the sampling 
rate, and PAR(f) is the AR parametric spectrum calculated through the AR technique. 

5. IMPLEMENTATION METHODOLOGY 

5. I. Introduction 

Several vibration imbalance conditions were generated using a rotating test rig. In order to study 
the capabilities of CMAC networks, a two-stage experimental procedure is proposed. First, a 
CMAC network is trained with different severity conditions. Then, a test data set is used to check 
the trained CMAC for severity prediction. Second, a CMAC network is trained by a set of different 
severity conditions, and is then given an untrained condition to test the CMACs ability to estimate 
the severity level of the unknown condition. The CMAC architecture used is a multiple-input 
one-output model. Figure 2 shows the diagram of the CMAC training and testing procedures. 

5.2. Experimental set-up 

Data collection in the form of vibration signals was conducted using the following setup: a test 
rig consisting of a d.c. motor connected to a shaft by a drivebelt with two pillow block bearings 
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r~in~- - I Training Goal 
o r  

"" 1. Desired Output 

Domain Trending 
Transformation Indices 

Functional Parameter 

I Vibration ~ ~ ~ C M A C !  
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Machine 
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Fig. 2. CMAC training and testing procedures. 

and two round hubs mounted on each end of the shaft; a steel plate was used to secure the whole 
test rig. Vibration signals were collected from the right bearing using a 328C04 PCB accelerometer 
mounted horizontally on the bearing housings. A DT2821-G-8DI data acquisition board was 
installed in a 486 IBM compatible PC. The entire setup is illustrated in Fig. 3. 

5.3. Data preparation 

In order to generate different imbalance levels (different machine fault severity levels), a piece 
of clay which was divided into six equal-weight parts was used. By adding a piece of clay at a time, 
the imbalance level of the test rig increased. Therefore, totally, there were seven different imbalance 
conditions labeled 1-7. Level 1 represented a balanced condition, meaning that there was no clay 
attached to the test rig. For each imbalance level, 15 signals were collected. Each signal was used 
to calculate one set of trending indices and AR parameters. The trending index set includes EWMA, 
Kurtosis, RMS and MFRMS. For the AR parametric model, an order of seven was chosen, which 
formed an AR(7) parameter vector containing seven AR parameters and one error term. In other 

PC with 
Data Acquisition Board 

Acc pier°? ete rM ultiplexer ~ ~  

Fig. 3. The experimental setup for vibration signal acquisition. 
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words, 15 sets of trending indices and AR parameters were generated for each level. They were 
then used in the training and testing of CMACs. 

The 15 data sets were divided into five groups. The average value of each group was recorded. 
For either the case of the trending index or the AR(7) parameter, each imbalance condition 
contained three training vectors and two test vectors. Also, since the CMAC is a supervised neural 
network, the level of the imbalance condition was assigned to each training vector as a training 
goal and to each test vector as a desired output. The prepared data sets are given in Appendix 
Tables A1 and A2, respectively. 

5.4. Training sets, test sets, test results and test errors 

In order to study the interpolation feature of the CMAC, three training sets, including different 
combinations of the training vectors, were designed. The X training set included all training vectors 
(three training vectors from each imbalance level, at a total of 21). For the Y training set, the 
training vectors from imbalance level 6 were intentionally left out. For the Z training set, the 
training vectors from imbalance levels 3 and 6 were left out. After each training section, the entire 
test set was still used to test the trained CMAC for interpolation property investigation. 

A test result is the CMAC output after a test vector is entered. The test results of the test set 
can be written in the following vector format: 

P = {P, ,Pz . . . . .  P,4}, (13) 

where Pi is the ith test result. For each test result, there is an expected value associated with it. 
These expected values can be written as vector Po: 

Pd = { Ptd, Pzd . . . . .  P,4d }, (14) 

where Pid is the desired output of p~. 
A test error, TE, may be defined by computing the distance between vectors P and Pd. TE is 

used as an accuracy index for each CMAC training section. Equation (15) is the equation of TE: 

14 

TE = ~ x/(p~--p~d) 2. (15) 
i = l  

5.5. Tra&ing iteration 

According to the CMAC learning algorithm, a small acceptable error E must be given before the 
training procedure begins. In the training stage, the CMAC continues adjusting its weights until 
its prediction error is smaller than E. However, in order to compare different CMAC configurations, 
a fixed number of training iterations was designed. For the trending indices inputs, 200 training 
iterations were used. For the AR(7) parameters case, 5000 training iterations were chosen. 

5.6. Training with vibration trending indices 

Figure 4 shows the normalized trending indices plot for all imbalance conditions. The EWMA, 
RMS and MFRMS indices in the plot show increasing trends from the imbalance level 1-7, but 
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Fig.  4. T r e n d i n g  indices  i n p u t  space  (no rma l i zed  d a t a  sets). 
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Fig. 5. AR(7) parameters input space (normalized data  sets). 

the Kurtosis index fluctuates considerably. Figure 4 basically shows the input space of the vibration 
trending indices case. 

To date, there is no deterministic way of selecting a good set of parameters for the CMAC. In 
most cases the trial-and-error method is used. Usually, the first parameter to be determined is the 
physical memory size available on the computer. For the case of trending indices, the following 
CMAC parameters were specified: 

N = 4 ,  R = 600, IApl = 4096, 3 = 1, K =  32,64,128,256,512, 

where five different K numbers were selected for five separate runs. The purpose was to test the 
generalization capability of the CMAC. Besides adjusting the K-value in the CMAC, three different 
training sets (X, Y and Z) were also used to investigate the CMAC's interpolation capability. The 
results are given in the next section. 

5. 7. Training with the AR(7) parameters case 

Figure 5 shows the input space of the normalized AR(7) parameters. The seven AR(7) parameters 
and one error term are represented by al . . . . .  a7, and tr 2, respectively. Figure 5 displays a more 
complicated situation for the CMAC training. The only visible trend is the error term tr 2. Due to 
the complexity of the AR(7) parameters input space only the X training set of the AR(7) parameters 
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Fig. 6. Trending indices test error converging curves for different K numbers  (training set = X; training 
iterations = 200). 
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Fig. 7. Trending indices training speed vs test error for different K numbers (training set = X; training 
iterations = 200; time = I00 s). 

with different K-values was implemented. Also, because of the ambiguous input-output relation- 
ship observed in the AR(7) parameters input space, the CMAC would need more training 
iterations. Therefore, the training iteration was set to 5000. Other CMAC parameters used are listed 
as follows: 

N = 8 ,  R = 6 0 0 ,  IAp1=4096, f l = l ,  K=32,64,128,256,512.  

6. EXPERIMENTAL RESULTS AND DISCUSSION 

6.1. Test results: vibration trending indices case 

In this sect ion the C M A C  test results for  the t rending  indices case are  discussed.  F igure  6 shows 
the T E  curves when using the X t ra in ing set with different K numbers .  The logar i thmic  scale was 
appl ied  on the Y-axis. 

No te  that  the TE curves converged to s teady states at  different exponent ia l  rates for  all K 
numbers .  F o r  example ,  in the case o f  K = 128, a s teady state was reached after  40 learning 
i te ra t ions  which t ook  less than  1 s on a 486 PC. Also,  the final test er rors  were all very small  ( f rom 
0.56 to 0.24), indica t ing  that  the C M A C  was able  to est imate the machine  imbalance  levels 
correct ly.  F igure  7 i l lustrates  how the C M A C  genera l iza t ion  capabi l i ty  decreased (TE increased) 
as the number  o f  quant iz ing  funct ion (K) decreased.  However ,  there was a t rade-off  between the 
K-va lue  and  the ca lcula t ion  speed. F igure  7 shows that  when the K-va lue  increased,  the C M A C  
ne twork  needed no t  only  more  memory ,  but  also a longer  calcula t ion time. 

The  C M A C  m e m o r y  a l loca t ion  p rob lem has a l ready  been hand led  by hash-coding,  which al lows 
one to choose  the m a x i m u m  m e m o r y  size avai lable  on the computer .  T h r o u g h o u t  the entire test ing 
section, the m e m o r y  size was fixed at  4096 x 32 bits. Therefore ,  the learning speed was the only 
fac tor  influencing the selection o f  K. F o r  the t rending indices case, Fig. 7 suggests that  K = 128 
would  be the best  choice. 
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Fig. 8. Trending indices CMAC test errors for X, Y and Z training sets (Y set: level 6 missing; Z set: levels 
6 and 3 missing; training iterations = 200). 
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C M A C  Interpolation forY Training Set 
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Fig. 9. Trending indices CMAC test results for Y and Z training sets (K = 256; training iterations = 200). 

Figure 8 compares the test results from different training sets. The purpose is to investigate the 
interpolation capability of the CMAC network for the missing training vectors. Remember that 
both Y and Z training sets have training vectors missing. As shown in Fig. 8, the overall TE level 
of the X training set is much smaller than Y and Z, and Y is smaller than Z since it has only one 
training vector missing. In addition, the CMAC interpolation capability may be improved by 
increasing the K-value. That is, when a large K number is chosen (e.g. K = 512), the test errors 
for all training sets become very close, demonstrating the outstanding interpolation capability of 
the CMAC. 
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Fig. 10. AR(7) parameters test error curves for different K numbers (training set = X; training 
iterations = 5000). 
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Fig. I 1. AR(7)  pa rame te r s  t r a in ing  speed vs test  e r ror  for different K number s  ( t ra in ing  set = X; t ra in ing  
i te ra t ions  = 5000; t ime  x 1000 s). 

Figure 9 illustrates the detailed test results of using the Y and Z training sets. The solid bars 
represent the training vectors, and the dashed lines with circles or diamonds indicate the positions 
of CMAC test outputs. It shows that the CMAC network can predict the missed trained positions 
very well. 

6.2. Test results: AR(7) parameters case 

As expected, due to the complexity of the AR(7) parameters input space, the test results of the 
AR(7) parameters were not as reliable as those of the trending indices (cf. Fig. 10 to Fig. 6). 
However, three important phenomena can be seen from Fig. 10. First, the exponentially-decreasing 
training curve is highlighted. It might take a longer time to complete each training iteration, but 
the shapes of most curves remain similar. Second, when K = 128 the best test result was achieved, 
which is consistent to the trending indices case. Finally, the TE converging curve for K = 512 
displayed an interesting "over-trained" phenomenon. That is, after about 2500 training iterations, 
the value of test errorreached its minimum and began climbing. 

Figure 11 shows again as the K-value increased, the CMAC needed more calculation time. 
Obviously 128 is the most appropriate K-value since it has the minimum TE value. 

Figure 12 demonstrates the detailed test results when the X training set of the AR(7) parameters 
was used. The solid bars represent the training vectors from the X training set, and the dashed 
line with circles shows the positions of the CMAC test outputs. It did not give a reliable 
estimation for each test vector. However, the dashed line did, in general, follow the trend of 
imbalance levels. 
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Fig. 12. AR(7)  pa rame te r s  C M A C  test results  for K = 128 ( t ra ining set = X; t r a in ing  i tera t ions  = 5000). 
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7. CONCLUDING REMARKS 

To meet  the requi rements  o f  on- l ine  machine  fault  mon i to r ing  and fault  severity es t imat ion  in 
a predict ive ma in tenance  system, a new a p p r o a c h  combin ing  the C M A C  neural  ne twork  and an 
advanced  t rending  mon i to r i ng  me thod  has been p r o p o s e d  and  implemented  in this paper .  

Several  po ten t ia l  capabi l i t ies  o f  the C M A C  ne twork  have been discussed and  shown in the paper .  
The  proper t ies  o f  the C M A C  are notable .  Firs t ,  due to its ou t s tand ing  funct ional  in te rpola t ion  and 
quant i ta t ive ly  descr ipt ive feature,  the C M A C  m a y  be used as a fault  severity es t imat ion  tool.  This 
overcomes  the p rob l em encounte red  in using o ther  A N N s  such as A R T 2 ,  which per forms  only as 
a pa t t e rn  classifier. Second,  because o f  the local genera l iza t ion  p rope r ty  o f  the C M A C ,  incremental  
learning is no longer  a p rob lem.  It  used to be a ma jo r  d r a w b a c k  o f  the b a c k p r o p a g a t i o n  network.  
F ina l ly ,  the exponent ia l  learning speed and great  i n p u t - o u t p u t  genera l iza t ion  capabi l i ty  make  
on-l ine  real - t ime machine  pe r fo rmance  es t imat ion  possible.  The research recounted  in this paper  
demons t r a t e s  tha t  the selection o f  an adequa te  feature ext rac t ion  scheme for the C M A C  is also 
impor t an t .  Using  the c o m b i n a t i o n  o f  v ib ra t ion  t rending indices as the C M A C  input  vectors 
ou tpe r fo rms  using the A R  parameters .  

Current ly ,  only  one type o f  machine  fault ,  ro ta t ing  imbalance ,  has been studied. It is 
necessary to implement  and  val idate  the C M A C  ne twork  with o ther  faults  or  the combina t ion  o f  
several  faults  before  a comple te  predict ive main tenance  scheme can be implemented  in rea l -wor ld  
settings. 
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APPENDIX A 

Table AI.  The trending index CMAC input vectors 

EWMA Kurtosis MFRMS RMS Goal 

Training vector 

0.04 6.88 0.40 0.17 1 
0.05 7.51 0.51 0.18 1 
0.02 7.27 0.39 0.17 1 
0.20 7. I 1 1.35 0.04 2 
0.18 7.96 1.45 0.03 2 
0.23 8.54 1.10 0.08 2 
3.58 1.73 0.20 1.71 3 
3.61 1.80 0.31 1.71 3 
3.64 2.36 0.55 1.76 3 
5.71 0.54 0.52 3.18 4 
5.71 0.37 1.09 3.23 4 
5.71 0.39 0.96 3.26 4 
7.60 1.82 4.98 5.42 5 
7.61 1.68 5.24 5.49 5 
7.62 2.22 4.82 5.50 5 
8.92 4.68 3.78 6.81 6 
8.97 6.67 4.00 7.00 6 
9.02 6.57 3.84 7.00 6 
9.81 1.46 9.43 9.82 7 
9.94 1.87 8.66 9.94 7 
9.94 1.79 8.05 9.93 7 

Test vector 

0.02 6.43 0.43 0.18 1 
0.05 6.88 0.46 0.20 1 
0.21 7.92 1.12 0.06 2 
0.22 7.96 0.98 0.09 2 
3.62 2.32 0.34 1.73 3 
3.63 2.71 0.70 1.77 3 
5.76 0.48 0.50 3.35 4 
5.72 0.65 0.74 3.30 4 
7.59 2.52 4.54 5.53 5 
7.59 2.53 5.28 5.54 5 
8.92 7.04 4.13 6.97 6 
8.90 6.47 4.25 6.92 6 
9.94 1.90 9.12 9.90 7 
9.99 2.08 7.93 9.81 7 

(Appendix continued overleaf ) 
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Table A2. The AR(7) parameter C M A C  input vectors 

a t a 2 a 3 a 4 a 5 a 6 a 7 Error Goal 

Training vector 

0.81 0.88 1.05 1.28 0.98 1.45 1.22 0,08 1 
0.79 0.85 1.07 1.30 0.96 1.44 1.20 0.09 1 
0.81 0.85 1.07 1.30 0.95 1.46 1.20 0.07 1 
0.76 0.80 1. I 1 1.34 0.84 1.28 1.40 0.03 2 
0.75 0.83 1.07 1.37 0.82 1,30 1.39 0.02 2 
0.79 0.76 1,12 1.37 0.84 1.27 1.39 0,05 2 
0.76 0.85 1.14 1.24 0.94 1.45 1.22 0.02 3 
0.73 0,89 1.06 1.25 0.99 1.46 1.16 0.04 3 
0.70 0.90 1.11 1.27 0.98 1.38 1.22 0.06 3 
0.67 0,88 1.23 1.20 0.92 1,42 1.23 0.04 4 
0.66 0.89 1.23 1.21 0.92 1.40 1.24 0.03 4 
0.68 0.87 1,20 1.23 0.93 1.42 1.21 0.03 4 
0.64 0.76 1.34 1.22 1.07 1.14 1.28 0.37 5 
0.61 0.80 1.30 1.22 1.11 1.12 1.26 0.40 5 
0.60 0.79 1.35 1.22 1.06 1.13 1.28 0.41 5 
0.71 0.80 1.21 1.22 1.06 1,25 1.26 1.15 6 
0.73 0.81 1.23 1.21 1.06 1.27 1.27 1.59 6 
0.72 0.83 1.21 1.21 1.05 1.28 1.27 1.48 6 
0.58 1,04 1.19 1.24 1.11 1.16 1.32 1.64 7 
0.59 1.11 1.13 1.25 1.13 1.17 1.34 1.83 7 
0.61 1.07 1.17 1.27 1.06 1.21 1.34 1.79 7 

Test vector 

0.78 0.87 1.09 1.29 0.93 1.46 1.21 0.08 1 
0.79 0.84 1.13 1.29 0.93 1.45 1.22 0.08 1 
0.80 0.78 1.09 1.36 0.85 1.31 1.38 0.03 2 
0.79 0.77 1.1! 1.38 0.85 1.28 1.38 0.05 2 
0.71 0.91 1.12 1.22 0.98 1.44 1.19 0.05 3 
0.72 0.93 1.06 1.26 1.00 1.43 1.18 0.08 3 
0.72 0.84 1.22 1.22 0.95 1.42 1.22 0.03 4 
0.67 0.89 1.21 1.22 0.96 1.38 1.23 0.04 4 
0.57 0.82 1.30 1.20 1.13 1.11 1.24 0.52 5 
0.56 0.81 1.32 1.22 1.09 1.10 1.25 0.51 5 
0.76 0.76 1.21 1.24 1.08 1.25 1.25 1.69 6 

0 . 7 4  0.80 1.19 1.23 1.10 1.23 1.26 1.68 6 
0.56 1.10 1.16 1.23 1.11 1.18 1.32 1.81 7 
0.58 0.99 1.22 1.23 1.12 1.14 1.30 1.73 7 


